Xu hướng ứng dụng hạt nano silica trong bảo vệ thực vật hướng đến canh tác bền vững


Các tác giả

  • Trần Đăng Khoa Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội
  • Đồng Huy Giới Học viện Nông nghiệp Việt Nam
  • La Việt Hồng Trường Đại học Sư phạm Hà Nội 2
  • Chu Đức Hà Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội
DOI: https://doi.org/10.55250/Jo.vnuf.14.2.2025.031-041

Từ khóa:

Bảo vệ thực vật, hạt nano silica, tác nhân gây bệnh, tổng hợp

Tóm tắt

Nghiên cứu này tập trung vào việc khai thác tiềm năng ứng dụng của hạt nano silica (SiNP) trong bảo vệ thực vật, với mục tiêu cải thiện hiệu quả kiểm soát sâu, bệnh hại và tăng cường sức đề kháng của cây trồng. SiNP được tổng hợp thông qua các phương pháp truyền thống như sol-gel, Stöber, ngưng tụ hơi hóa học và các quy trình tổng hợp xanh thân thiện môi trường, cho phép điều chỉnh kích thước, cấu trúc và tính chất vật liệu. Với vai trò như một chất mang hiệu quả, SiNP hỗ trợ lưu giữ và giải phóng có kiểm soát thuốc bảo vệ thực vật dựa trên các yếu tố kích hoạt như pH, enzyme, và nhiệt độ, giúp kéo dài hiệu quả bảo vệ, giảm thất thoát và dư lượng hóa chất trong môi trường. Ngoài ra, SiNP thể hiện khả năng kháng nấm bệnh, vi khuẩn, và sâu hại thông qua việc điều chỉnh hệ thống phòng vệ sinh lý và phân tử của cây, như tăng cường hoạt tính enzyme chống oxy hóa và điều hòa tín hiệu hormone thực vật. Tuy nhiên, các vấn đề liên quan đến tồn dư thuốc bảo vệ thực vật trong đất và tác động đến hệ sinh thái đất vẫn cần được nghiên cứu thêm để tối ưu hóa ứng dụng SiNP trong nông nghiệp. Nghiên cứu này phân tích xu hướng ứng dụng hạt nano silica trong bảo vệ thực vật , qua đó góp phần xây dựng giải pháp bền vững, giảm thiểu tác động tiêu cực đến môi trường và tăng cường hiệu quả sản xuất nông nghiệp trong bối cảnh biến đổi khí hậu và an toàn thực phẩm.

Tài liệu tham khảo

. Almatroudi A. (2020). Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 15(1): 819-839.

. Guleria G., Thakur S., Shandilya M., Sharma S., Thakur S. & Kalia S. (2023). Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiol Biochem. 194: 533-549.

. Haris M., Hussain T., Mohamed H. I., Khan A., Ansari M. S., Tauseef A., Khan A. A. & Akhtar N. (2023). Nanotechnology - A new frontier of nano-farming in agricultural and food production and its development. Sci Total Environ. 857(3): 159639.

. Kour D., Khan S. S., Kumari S., Singh S., Khan R. T., Kumari C., Kumari S., Dasila H., Kour H., Kaur M., Ramniwas S., Kumar S., Rai A. K., Cheng W. H. & Yadav A. N. (2024). Microbial nanotechnology for agriculture, food, and environmental sustainability: Current status and future perspective. Folia Microbiol. 69: 491-520.

. Tang Y., Zhao W., Zhu G., Tan Z., Huang L., Zhang P., Gao L. & Rui Y. (2023). Nano-pesticides and fertilizers: Solutions for global food security. Nanomaterials. 14(1): 90.

. Chernousova S. & Epple M. (2013). Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 52(6): 1636-53.

. Bahrulolum H., Nooraei S., Javanshir N., Tarrahimofrad H., Mirbagheri V. S., Easton A. J. & Ahmadian G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnology. 19(1): 86.

. Kaningini A. G., Nelwamondo A. M., Azizi S., Maaza M. & Mohale K. C. (2022). Metal nanoparticles in agriculture: A review of possible use. Coatings. 12(10): 1586.

. El-Naggar M. E., Abdelsalam N. R., Fouda M., Mackled M., Al-Jaddadi M., Ali H., Siddiqui M. & Kandil E. (2020). Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials. 10(4): 739.

. Yuvaraj M., Sathya Priya R., Jagathjothi N., Saranya M., Suganthi N., Sharmila R., Cyriac J., Anitha R. & Subramanian K. S. (2023). Silicon nanoparticles (SiNPs): Challenges and perspectives for sustainable agriculture. Physiol Mol Plant Pathol. 128: 102161.

. Yan G., Huang Q., Zhao S., Xu Y., He Y., Nikolic M., Nikolic N., Liang Y. & Zhu Z. (2024). Silicon nanoparticles in sustainable agriculture: synthesis, absorption, and plant stress alleviation. Front Plant Sci. 15: 1393458.

. Saha A. & Mishra P. (2024). Greening the pathways: a comprehensive review of sustainable synthesis strategies for silica nanoparticles and their diverse applications. RSC Advances. 14(16): 11197-11216.

. Fneich H. & Gaumer N. (2021). The effect of size and thermal treatment on the photoluminescent properties of europium-doped SiO(2) nanoparticles prepared in pne pot by sol-gel. Materials. 14(7): 1607.

. Bhakta S., Dixit C. K., Bist I., Jalil K. A., Suib S. L. & Rusling J. F. (2016). Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles. Mater Res Express. 3(7): 075025.

. Singh L. P., Bhattacharyya S. K., Kumar R., Mishra G., Sharma U., Singh G. & Ahalawat S. (2014). Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci. 214: 17-37.

. Dixit C. K., Bhakta S., Kumar A., Suib S. L. & Rusling J. F. (2016). Fast nucleation for silica nanoparticle synthesis using a sol-gel method. Nanoscale. 8(47): 19662-19667.

. Murugadoss S., Lison D., Godderis L., Van Den Brule S., Mast J., Brassinne F., Sebaihi N. & Hoet P. H. (2017). Toxicology of silica nanoparticles: An update. Arch Toxicol. 91(9): 2967-3010.

. Wang W., Martin Jarett C., Fan X., Han ., Luo Z. & Sun L. (2012). Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces. 4(2): 977-981.

. Gu S., Zhou J., Yu C., Luo Z., Wang Q. & Shi Z. (2015). A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination. Ind Crops Prod. 65: 1-6.

. Adebisi J. A., Agunsoye J. O., Bello S. A., Haris M., Ramakokovhu M. M., Daramola M. O. & Hassan S. B. (2020). Green production of silica nanoparticles from maize stalk. Part Sci Technol. 38(6): 667-675.

. Abdelrhim A. S., Mazrou Y. S. A. & Nehela Y. (2021). Silicon dioxide nanoparticles induce innate immune responses and activate antioxidant machinery in wheat against Rhizoctonia solani. Plants. 10(12): 2758.

. Albalawi M. A., Abdelaziz A. M., Attia M. S., Saied E., Elganzory H. H. & Hashem A. H. (2022). Mycosynthesis of silica nanoparticles using Aspergillus niger: Control of Alternaria solani causing early blight disease, induction of innate immunity and reducing of oxidative stress in eggplant. Antioxidants. 11(12): 2323.

. Park H. J., Sung H. K., Hwa J. K. & Seong H. C. (2006). A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J. 22(3): 295-302.

. Baka Z. A. & El-Zahed M. M. (2022). Antifungal activity of silver/silicon dioxide nanocomposite on the response of faba bean plants (Vicia faba L.) infected by Botrytis cinerea. Biores Bioprocess. 9(1): 102.

. Khan M., Siddiqui Z. A., Parveen A., Khan A. A., Moon I. S. & Alam M. (2022). Elucidating the role of silicon dioxide and titanium dioxide nanoparticles in mitigating the disease of the eggplant caused by Phomopsis vexans, Ralstonia solanacearum, and root-knot nematode Meloidogyne incognita. Nanotech Reviews. 11(1): 1606-1619.

. Ayoub H. A., Khairy M., Rashwan F. A. & Abdel-Hafez H. F. (2017). Synthesis and characterization of silica nanostructures for cotton leaf worm control. J Nanostructure Chem. 7(2): 91-100.

. Saw G., Nagdev P., Jeer M. & Murali-Baskaran R. K. (2023). Silica nanoparticles mediated insect pest management. Pestic Biochem Physiol. 194: 105524.

. Thabet A. F., Boraei H. A., Galal O. A., El-Samahy F. M., Mousa K. M., Zhang Y. Z., Tuda M., Helmy E. A., Wen J. & Nozaki T. (2021). Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Sci Rep. 11(1): 14484.

. Naidu S., Pandey J., Mishra L. C., Chakraborty A., Roy A., Singh I. K. & Singh A. (2023). Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress. Ecotoxicol Environ Saf. 255: 114783.

. Adrees M., Khan Z. S., Rehman M. Z., Rizwan M. & Ali S. (2022). Foliar spray of silicon nanoparticles improved the growth and minimized cadmium (Cd) in wheat under combined Cd and water-limited stress. Environ Sci Pollut Res. 29(51): 77321-77332.

. Buchman J. T., Elmer W. H., Ma C., Landy K. M., White J. C. & Haynes C. L. (2019). Chitosan-coated mesoporous silica nanoparticle treatment of Citrullus lanatus (Watermelon): Enhanced fungal disease suppression and modulated expression of stress-related genes. ACS Sustainable Chemistry & Engineering. 7(24): 19649-19659.

. Wang L., Pan T., Gao X., An J., Ning C., Li S. & Cai K. (2022). Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact. 28: 100418.

. Rashad Y., El-Sharkawy H., Belal B., Abdel Razik Elsayed S. & Galilah A. (2021). Silica nanoparticles as a probable anti-oomycete compound against downy mildew, and yield and quality enhancer in grapevines: Field evaluation, molecular, physiological, ultrastructural, and toxicity investigations. Front Plant Sci. 12: 763365.

. Wang Z., Zhu W., Chen F., Yue L., Ding Y., Xu H., Rasmann S. & Xiao Z. (2021). Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Sci Total Environ. 778: 146378.

. Suriyaprabha R., Karunakaran G., Kavitha K., Yuvakkumar R., Rajendran V. & Kannan N. (2014). Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol. 8(3): 133-137.

. El-Shetehy M. & Moradi A. (2021). Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotech. 16(3): 344-353.

. Zhang J., Kothalawala S. & Yu C. (2023). Engineered silica nanomaterials in pesticide delivery: Challenges and perspectives. Environmental Pollution. 320: 121045.

. Bilal M., Xu C., Cao L., Zhao P., Cao C., Li F. & Huang Q. (2020). Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of Plutella xylostella L. with decreased detoxification enzymes activities. Pest Manag Sci. 76(11): 3749-3758.

. Abdelrahman T. M., Qin X., Li D., Senosy I. A., Mmby M., Wan H., Li J. & He S. (2021). Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants. Chem Engineer J. 404: 126440.

. Zhao P., Cao L., Ma D., Zhou Z., Huang Q. & Pan C. (2018). Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale. 10(4): 1798-1806.

Tải xuống

Số lượt xem: 48
Tải xuống: 8

Đã Xuất bản

15/04/2025

Cách trích dẫn

Đăng Khoa, T., Huy Giới, Đồng, Việt Hồng, L., & Chu Đức Hà. (2025). Xu hướng ứng dụng hạt nano silica trong bảo vệ thực vật hướng đến canh tác bền vững. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ LÂM NGHIỆP, 14(2), 031–041. https://doi.org/10.55250/Jo.vnuf.14.2.2025.031-041

Số

Chuyên mục

Công nghệ sinh học và Giống cây trồng

Các bài báo được đọc nhiều nhất của cùng tác giả